| Type | Relation | Equation |
|---|---|---|
| Direct | $y \propto x$ | $y = kx$ |
| Inverse | $y \propto \dfrac{1}{x}$ | $y = \dfrac{k}{x}$ |
| Joint | $y \propto xz$ | $y = kxz$ |
| Partial | $y =$ const $+$ var | $y = a + bx$ |
$y = kx$, $12 = 3k$ → $k = 4$
When $x = 5$: $y = 4(5) = 20$
$y$ is partly constant and partly varies as $x^2$. When $x = 2$, $y = 14$. When $x = 3$, $y = 27$. Find $y$ when $x = 4$.
$y = a + bx^2$
$14 = a + 4b$, $27 = a + 9b$ → $b = 2.6$, $a = 3.6$
When $x = 4$: $y = 3.6 + 2.6(16) = 45.2$
📘 MathsKiller Textbook Series | Chapter 8: Variations
© 2025 MathsKiller