| Name | Formula |
|---|---|
| Distance | $d = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}$ |
| Midpoint | $M = \left(\dfrac{x_1+x_2}{2}, \dfrac{y_1+y_2}{2}\right)$ |
| Slope | $m = \dfrac{y_2-y_1}{x_2-x_1}$ |
| Form | Formula | Key Feature |
|---|---|---|
| Slope-intercept | $y = mx + c$ | slope = $m$, y-int = $c$ |
| Point-slope | $y - y_1 = m(x - x_1)$ | passes $(x_1, y_1)$ |
| General | $ax + by + c = 0$ | slope = $-\frac{a}{b}$ |
Parallel: $m_1 = m_2$
Perpendicular: $m_1 \times m_2 = -1$
| Form | Formula |
|---|---|
| Standard | $(x-h)^2 + (y-k)^2 = r^2$ |
| General | $x^2 + y^2 + Dx + Ey + F = 0$ |
Centre: $(-\frac{D}{2}, -\frac{E}{2})$, Radius: $r = \sqrt{\frac{D^2}{4} + \frac{E^2}{4} - F}$
The distance from $(3, 4)$ to the line $3x + 4y - 10 = 0$ is?
A. 1 B. 3 C. 5 D. 15
$d = \dfrac{|3(3) + 4(4) - 10|}{\sqrt{9 + 16}} = \dfrac{15}{5} = 3$
Answer: B
1. 10 2. $y = 2x - 7$ 3. Centre $(-1, 4)$, $r = 5$
📘 MathsKiller Textbook Series | Chapter 5: Coordinate Geometry
© 2025 MathsKiller