| Name | Formula | Note |
|---|---|---|
| General Term | $T(n) = a + (n-1)d$ | $a$ = first term, $d$ = common difference |
| Sum Formula 1 | $S(n) = \dfrac{n}{2}[2a + (n-1)d]$ | When $a$, $d$, $n$ known |
| Sum Formula 2 | $S(n) = \dfrac{n(a + l)}{2}$ | $l$ = last term |
$a = 2$, $d = 3$
$T(20) = 2 + 19 \times 3 = 59$
$S(20) = \dfrac{20(2 + 59)}{2} = 610$
| Name | Formula | Note |
|---|---|---|
| General Term | $T(n) = ar^{n-1}$ | $a$ = first term, $r$ = common ratio |
| Sum Formula | $S(n) = \dfrac{a(1-r^n)}{1-r}$ | $r \neq 1$ |
$0.\dot{3} = \dfrac{0.3}{1-0.1} = \dfrac{0.3}{0.9} = \dfrac{1}{3}$
A G.P. has first term 4 and common ratio 3. Find the sum of first 5 terms.
A. 484 B. 364 C. 324 D. 244
$S(5) = \dfrac{4(3^5-1)}{3-1} = \dfrac{4 \times 242}{2} = 484$
Answer: A
1. 59 2. $\frac{63}{16}$ 3. $\frac{3}{2}$
📘 MathsKiller Textbook Series | Chapter 4: Sequences & Series
© 2025 MathsKiller