📚 Back
📚 MATHSKILLER TEXTBOOK SERIES
04

Sequences & Series

© 2025 MathsKiller
CHAPTER 4

Sequences & Series

🎯 Learning Objectives

4.1
Arithmetic Sequences (A.P.)
NameFormulaNote
General Term$T(n) = a + (n-1)d$$a$ = first term, $d$ = common difference
Sum Formula 1$S(n) = \dfrac{n}{2}[2a + (n-1)d]$When $a$, $d$, $n$ known
Sum Formula 2$S(n) = \dfrac{n(a + l)}{2}$$l$ = last term
Example 1

A.P.: 2, 5, 8, 11, ... Find the 20th term and the sum of first 20 terms.

📝 Solution

$a = 2$, $d = 3$

$T(20) = 2 + 19 \times 3 = 59$

$S(20) = \dfrac{20(2 + 59)}{2} = 610$

4.2
Geometric Sequences (G.P.)
NameFormulaNote
General Term$T(n) = ar^{n-1}$$a$ = first term, $r$ = common ratio
Sum Formula$S(n) = \dfrac{a(1-r^n)}{1-r}$$r \neq 1$
4.3
Infinite Geometric Series
Sum to Infinity
$S_\infty = \dfrac{a}{1-r}$
Condition: $|r| < 1$

⚡ Common Application: Recurring Decimals

$0.\dot{3} = \dfrac{0.3}{1-0.1} = \dfrac{0.3}{0.9} = \dfrac{1}{3}$

📋 DSE Past Paper Questions

DSE 2021 Q17

A G.P. has first term 4 and common ratio 3. Find the sum of first 5 terms.

A. 484   B. 364   C. 324   D. 244

📝 Solution

$S(5) = \dfrac{4(3^5-1)}{3-1} = \dfrac{4 \times 242}{2} = 484$

Answer: A

📝 Practice Questions

1. A.P.: 3, 7, 11, ... Find the 15th term.
2. G.P. with $a = 2$, $r = \frac{1}{2}$. Find sum of first 6 terms.
3. Find the sum of the infinite series $1 + \frac{1}{3} + \frac{1}{9} + ...$

📋 Answers

1. 59   2. $\frac{63}{16}$   3. $\frac{3}{2}$

📘 MathsKiller Textbook Series | Chapter 4: Sequences & Series

© 2025 MathsKiller