| Law | Formula | Example |
|---|---|---|
| Multiplication | $a^m \times a^n = a^{m+n}$ | $2^3 \times 2^4 = 2^7$ |
| Division | $a^m \div a^n = a^{m-n}$ | $3^5 \div 3^2 = 3^3$ |
| Power of Power | $(a^m)^n = a^{mn}$ | $(2^3)^4 = 2^{12}$ |
| Zero Power | $a^0 = 1$ | $5^0 = 1$ |
| Negative Index | $a^{-n} = \dfrac{1}{a^n}$ | $2^{-3} = \dfrac{1}{8}$ |
| Fractional Index | $a^{\frac{m}{n}} = \sqrt[n]{a^m}$ | $8^{\frac{2}{3}} = 4$ |
• $\log_a 1 = 0$ (because $a^0 = 1$)
• $\log_a a = 1$ (because $a^1 = a$)
| Law | Formula |
|---|---|
| Product | $\log_a(MN) = \log_a M + \log_a N$ |
| Quotient | $\log_a\left(\dfrac{M}{N}\right) = \log_a M - \log_a N$ |
| Power | $\log_a M^n = n\log_a M$ |
To find $\log_2 5$: Enter log 5 ÷ log 2 =
Answer: $\approx 2.322$
Simplify $\dfrac{(8^n)^2}{2^{5n}}$.
$= \dfrac{(2^3)^{2n}}{2^{5n}} = \dfrac{2^{6n}}{2^{5n}} = 2^n$
If $5^x = 3$, find the value of $25^x$.
A. 6 B. 9 C. 15 D. 243
$25^x = (5^2)^x = (5^x)^2 = 3^2 = 9$
Answer: B
1. $9$ 2. $5$ 3. $125$ 4. $5$ 5. $x = 3$
📘 MathsKiller Textbook Series | Chapter 3: Indices & Logarithms
© 2025 MathsKiller | mathskiller.pro