| Form | Formula | Key Features |
|---|---|---|
| General Form | $y = ax^2 + bx + c$ | y-intercept = $c$ |
| Vertex Form | $y = a(x-h)^2 + k$ | Vertex = $(h, k)$ ⭐ Most tested! |
| Factored Form | $y = a(x-p)(x-q)$ | x-intercepts = $p$, $q$ |
• See $(x-h)^2$ → Vertex form, vertex = $(h, k)$
• See $(x-p)(x-q)$ → Factored form, x-intercepts = $p$, $q$
Step 1: Find x-coordinate
$x = -\dfrac{-8}{2(2)} = \dfrac{8}{4} = 2$
Step 2: Substitute to find y-coordinate
$y = 2(2)^2 - 8(2) + 5 = 8 - 16 + 5 = -3$
∴ Vertex = $(2, -3)$
$y = (x + 3)^2 - 5$
Vertex = $(3, -5)$ ❌ WRONG!
Vertex = $(-3, -5)$ ✓ CORRECT!
Remember: $(x+3)^2 = (x-(-3))^2$, so $h = -3$
| Value of $a$ | Opening Direction | Vertex Type |
|---|---|---|
| $a > 0$ | Opens upward ∪ | Minimum point |
| $a < 0$ | Opens downward ∩ | Maximum point |
| Observation | Conclusion |
|---|---|
| Opens upward | $a > 0$ |
| Opens downward | $a < 0$ |
| Axis of symmetry to the RIGHT of y-axis | $a$ and $b$ have OPPOSITE signs |
| Axis of symmetry to the LEFT of y-axis | $a$ and $b$ have SAME sign |
| y-intercept ABOVE x-axis | $c > 0$ |
| y-intercept BELOW x-axis | $c < 0$ |
Step 1: Factor out $a$ from x terms
$y = 2(x^2 - 6x) + 13$
Step 2: Complete the square (add and subtract $(\frac{6}{2})^2 = 9$)
$y = 2(x^2 - 6x + 9 - 9) + 13$
$y = 2[(x-3)^2 - 9] + 13$
Step 3: Simplify
$y = 2(x-3)^2 - 18 + 13 = 2(x-3)^2 - 5$
∴ Vertex form: $y = 2(x-3)^2 - 5$, Vertex = $(3, -5)$
If the minimum value of $y = x^2 - 4x + k$ is 5, find $k$.
A. 1 B. 5 C. 9 D. 13
x-coordinate of vertex: $x = \frac{4}{2} = 2$
Minimum = $f(2) = 4 - 8 + k = k - 4 = 5$
$k = 9$
Answer: C
The vertex of the parabola $y = -2x^2 + 8x - 3$ is
A. $(-2, -27)$ B. $(-2, 5)$ C. $(2, -27)$ D. $(2, 5)$
$x = -\frac{8}{2(-2)} = 2$
$y = -2(4) + 16 - 3 = 5$
Answer: D
The figure shows the graph of $y = ax^2 + bx + c$. The graph opens upward, axis of symmetry is to the right of y-axis, y-intercept is negative. Which is correct?
A. $a > 0$, $b > 0$, $c > 0$
B. $a > 0$, $b < 0$, $c < 0$
C. $a < 0$, $b > 0$, $c > 0$
D. $a < 0$, $b < 0$, $c < 0$
• Opens upward → $a > 0$
• Axis on right → $a$ and $b$ opposite signs → $b < 0$
• y-intercept negative → $c < 0$
Answer: B
1. $(-3, -4)$ 2. $y = (x-2)^2 + 3$ 3. $k = -4$ 4. 4 5. $a < 0$, $b > 0$, $c > 0$
📘 MathsKiller Textbook Series
Chapter 2: Quadratic Functions
© 2025 MathsKiller | mathskiller.pro