A quadratic equation is a polynomial equation of degree 2 in one variable.
| Coefficient | Name | Example: $2x^2 - 5x + 3 = 0$ |
|---|---|---|
| $a$ | Coefficient of $x^2$ | $a = 2$ |
| $b$ | Coefficient of $x$ | $b = -5$ (note the negative!) |
| $c$ | Constant term | $c = 3$ |
Given $3x^2 = 5x - 2$, first convert to standard form!
$3x^2 - 5x + 2 = 0$
Here: $a = 3$, $b = -5$, $c = 2$
⚠️ Be careful with the sign of $b$!
When the equation can be factored into two linear factors.
Principle: If $AB = 0$, then $A = 0$ or $B = 0$
Step 1: Find two numbers that add to -5 and multiply to 6
Answer: -2 and -3
Step 2: Factorize
$x^2 - 5x + 6 = (x - 2)(x - 3) = 0$
Step 3: Solve
$x - 2 = 0$ or $x - 3 = 0$
$\therefore x = 2$ or $x = 3$
Identify: $a = 2$, $b = -5$, $c = -3$
Substitute into formula:
$x = \dfrac{-(-5) \pm \sqrt{(-5)^2 - 4(2)(-3)}}{2(2)}$
$= \dfrac{5 \pm \sqrt{25 + 24}}{4} = \dfrac{5 \pm 7}{4}$
$\therefore x = 3$ or $x = -\dfrac{1}{2}$
| Discriminant Value | Nature of Roots | Graph Intersection |
|---|---|---|
| $\Delta > 0$ | Two distinct real roots | Crosses x-axis at 2 points |
| $\Delta = 0$ | Two equal real roots (repeated) | Touches x-axis at 1 point |
| $\Delta < 0$ | No real roots | Does not cross x-axis |
"Has real roots" ≠ "Has distinct real roots"
If $\alpha$ and $\beta$ are roots of $ax^2 + bx + c = 0$, then:
| Expression | Formula |
|---|---|
| $\alpha^2 + \beta^2$ | $= (\alpha + \beta)^2 - 2\alpha\beta$ |
| $(\alpha - \beta)^2$ | $= (\alpha + \beta)^2 - 4\alpha\beta$ |
| $\dfrac{1}{\alpha} + \dfrac{1}{\beta}$ | $= \dfrac{\alpha + \beta}{\alpha\beta}$ |
Q9. The equation $x^2 - (k+1)x + k = 0$ has two equal real roots. (a) Find $k$. (b) Find the root.
(a) Equal roots → $\Delta = 0$
$(k+1)^2 - 4k = 0$
$k^2 - 2k + 1 = 0$
$(k-1)^2 = 0$, so $k = 1$
(b) When $k = 1$: $x^2 - 2x + 1 = 0$
$(x-1)^2 = 0$, so $x = 1$
Q9. If $\alpha$ and $\beta$ are roots of $3x^2 - 8x + 2 = 0$, find (a) $\alpha + \beta$ and $\alpha\beta$ (b) $\dfrac{1}{\alpha} + \dfrac{1}{\beta}$
(a) $\alpha + \beta = \dfrac{8}{3}$, $\alpha\beta = \dfrac{2}{3}$
(b) $\dfrac{1}{\alpha} + \dfrac{1}{\beta} = \dfrac{\alpha + \beta}{\alpha\beta} = \dfrac{8/3}{2/3} = 4$
Solve $(x-k)^2=4k^2$
A. $x=-k$
B. $x=3k$
C. $x=-k$ or $x=3k$
D. $x=k$ or $x=-3k$
$(x-k)^2 = 4k^2$
$x - k = \pm 2k$
$x = k + 2k = 3k$ or $x = k - 2k = -k$
Answer: C
If $x^2+ax+a=1$ has equal roots, find $a$.
A. $-1$ B. $2$ C. $0$ or $-4$ D. $-2$ or $2$
Standard form: $x^2 + ax + (a-1) = 0$
$\Delta = a^2 - 4(a-1) = 0$
$(a-2)^2 = 0$, so $a = 2$
Answer: B
📘 MathsKiller Textbook Series
Chapter 1: Quadratic Equations
© 2025 MathsKiller | mathskiller.pro