📚 Back to Contents
📚 MATHSKILLER TEXTBOOK SERIES
01

Quadratic Equations

in One Unknown
📖 Detailed Explanations
📝 DSE Past Papers
⚡ Quick Tips
✏️ Practice Questions
For HKDSE Mathematics (Compulsory Part)
© 2025 MathsKiller | mathskiller.pro

📋 Table of Contents

1.1 Definition and Standard FormP.3
1.2 Four Methods of SolvingP.4
   • FactorizationP.4
   • Quadratic FormulaP.5
   • Completing the SquareP.6
   • Graphical MethodP.7
1.3 The DiscriminantP.8
1.4 Vieta's FormulasP.10
1.5 Forming EquationsP.12
1.6 DSE Past Paper QuestionsP.14
1.7 Practice QuestionsP.20
1.8 AnswersP.24
CHAPTER 1

Quadratic Equations in One Unknown

🎯 Learning Objectives

1.1
Definition and Standard Form

📖 Definition

A quadratic equation is a polynomial equation of degree 2 in one variable.

Standard Form (General Form)
$ax^2 + bx + c = 0$
where $a \neq 0$, and $a$, $b$, $c$ are constants
Coefficient Name Example: $2x^2 - 5x + 3 = 0$
$a$ Coefficient of $x^2$ $a = 2$
$b$ Coefficient of $x$ $b = -5$ (note the negative!)
$c$ Constant term $c = 3$

⚡ Quick Tip: Identifying Coefficients

Given $3x^2 = 5x - 2$, first convert to standard form!

$3x^2 - 5x + 2 = 0$

Here: $a = 3$, $b = -5$, $c = 2$

⚠️ Be careful with the sign of $b$!

1.2
Four Methods of Solving

Method 1: Factorization

📖 When to Use

When the equation can be factored into two linear factors.

Principle: If $AB = 0$, then $A = 0$ or $B = 0$

Example 1

Solve: $x^2 - 5x + 6 = 0$

📝 Solution

Step 1: Find two numbers that add to -5 and multiply to 6

Answer: -2 and -3

Step 2: Factorize

$x^2 - 5x + 6 = (x - 2)(x - 3) = 0$

Step 3: Solve

$x - 2 = 0$ or $x - 3 = 0$

$\therefore x = 2$ or $x = 3$

Method 2: Quadratic Formula

The Quadratic Formula
$x = \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
Works for ALL quadratic equations
Example 2

Solve: $2x^2 - 5x - 3 = 0$

📝 Solution

Identify: $a = 2$, $b = -5$, $c = -3$

Substitute into formula:

$x = \dfrac{-(-5) \pm \sqrt{(-5)^2 - 4(2)(-3)}}{2(2)}$

$= \dfrac{5 \pm \sqrt{25 + 24}}{4} = \dfrac{5 \pm 7}{4}$

$\therefore x = 3$ or $x = -\dfrac{1}{2}$

1.3
The Discriminant
Discriminant
$\Delta = b^2 - 4ac$
Discriminant Value Nature of Roots Graph Intersection
$\Delta > 0$ Two distinct real roots Crosses x-axis at 2 points
$\Delta = 0$ Two equal real roots (repeated) Touches x-axis at 1 point
$\Delta < 0$ No real roots Does not cross x-axis

⚡ DSE Trap Warning!

"Has real roots" ≠ "Has distinct real roots"

1.4
Vieta's Formulas

📖 Vieta's Formulas

If $\alpha$ and $\beta$ are roots of $ax^2 + bx + c = 0$, then:

Sum of roots: $\alpha + \beta = -\dfrac{b}{a}$
Product of roots: $\alpha\beta = \dfrac{c}{a}$

🧠 Memory Tip

Sum has a negative sign: $-\dfrac{b}{a}$
Product has no negative: $\dfrac{c}{a}$

⚡ Useful Derived Formulas

ExpressionFormula
$\alpha^2 + \beta^2$$= (\alpha + \beta)^2 - 2\alpha\beta$
$(\alpha - \beta)^2$$= (\alpha + \beta)^2 - 4\alpha\beta$
$\dfrac{1}{\alpha} + \dfrac{1}{\beta}$$= \dfrac{\alpha + \beta}{\alpha\beta}$
1.6
DSE Past Paper Questions

⚡ Quadratic Equations - Quick Solve Strategies

TypeQuick StrategyFrequency
FactorizationFind two numbers: sum = -b, product = c85%
Discriminant Δ = 0b² = 4ac, expand and solve for k70%
Root substitutionIf β is root, then aβ² + bβ + c = 060%
Vieta's Formulasα+β = -b/a, αβ = c/a55%

📋 Paper 1 Questions

DSE 2015

Q9. The equation $x^2 - (k+1)x + k = 0$ has two equal real roots. (a) Find $k$. (b) Find the root.

📝 Solution

(a) Equal roots → $\Delta = 0$

$(k+1)^2 - 4k = 0$

$k^2 - 2k + 1 = 0$

$(k-1)^2 = 0$, so $k = 1$

(b) When $k = 1$: $x^2 - 2x + 1 = 0$

$(x-1)^2 = 0$, so $x = 1$

DSE 2022

Q9. If $\alpha$ and $\beta$ are roots of $3x^2 - 8x + 2 = 0$, find (a) $\alpha + \beta$ and $\alpha\beta$ (b) $\dfrac{1}{\alpha} + \dfrac{1}{\beta}$

📝 Solution

(a) $\alpha + \beta = \dfrac{8}{3}$, $\alpha\beta = \dfrac{2}{3}$

(b) $\dfrac{1}{\alpha} + \dfrac{1}{\beta} = \dfrac{\alpha + \beta}{\alpha\beta} = \dfrac{8/3}{2/3} = 4$

📋 Paper 2 Questions (Multiple Choice)

DSE 2014 Q24

Solve $(x-k)^2=4k^2$

A. $x=-k$
B. $x=3k$
C. $x=-k$ or $x=3k$
D. $x=k$ or $x=-3k$

📝 Quick Solution

$(x-k)^2 = 4k^2$

$x - k = \pm 2k$

$x = k + 2k = 3k$ or $x = k - 2k = -k$

Answer: C

DSE 2016 Q26

If $x^2+ax+a=1$ has equal roots, find $a$.

A. $-1$   B. $2$   C. $0$ or $-4$   D. $-2$ or $2$

📝 Quick Solution

Standard form: $x^2 + ax + (a-1) = 0$

$\Delta = a^2 - 4(a-1) = 0$

$(a-2)^2 = 0$, so $a = 2$

Answer: B

1.7
Practice Questions

📝 Self Test

1. Solve: $x^2 - 7x + 12 = 0$
2. Solve: $2x^2 + 5x - 3 = 0$
3. If $x^2 - 4x + k = 0$ has equal roots, find $k$.
4. If $\alpha$, $\beta$ are roots of $x^2 - 5x + 3 = 0$, find $\alpha^2 + \beta^2$.
5. If one root of $x^2 + px + 12 = 0$ is 3, find $p$ and the other root.
6. The equation $kx^2 - 6x + 3 = 0$ has real roots. Find the range of $k$.
7. If $\alpha$, $\beta$ are roots of $2x^2 - 3x - 5 = 0$, find $\dfrac{1}{\alpha} + \dfrac{1}{\beta}$.
8. Form a quadratic equation with roots $2 + \sqrt{3}$ and $2 - \sqrt{3}$.

📋 Answers

1. $x=3$ or $4$
2. $x=\frac{1}{2}$ or $-3$
3. $k=4$
4. $19$
5. $p=-7$, root $4$
6. $k \leq 3$, $k \neq 0$
7. $-\frac{3}{5}$
8. $x^2-4x+1=0$

📘 MathsKiller Textbook Series

Chapter 1: Quadratic Equations

© 2025 MathsKiller | mathskiller.pro