| 中文 | English | 原方程 → 新方程 |
|---|---|---|
| 向上移 $k$ | Up by $k$ | $y = f(x) \rightarrow y = f(x) + k$ |
| 向下移 $k$ | Down by $k$ | $y = f(x) \rightarrow y = f(x) - k$ |
| 向右移 $k$ | Right by $k$ | $y = f(x) \rightarrow y = f(x - k)$ |
| 向左移 $k$ | Left by $k$ | $y = f(x) \rightarrow y = f(x + k)$ |
上下移動:
• 在函數外面加減
• 加 → 上移,減 → 下移
左右移動:
• 在 x 旁邊加減(括號內)
• 「正反」原則:$x - k$ 向右移
Vertical shift:
• Add/subtract outside function
• + → up, − → down
Horizontal shift:
• Add/subtract beside x (in brackets)
• Opposite: $x - k$ shifts right
| 中文 | English | 原方程 → 新方程 | 效果 |
|---|---|---|---|
| 關於 x 軸反射 | Reflect in x-axis | $y = f(x) \rightarrow y = -f(x)$ | 上下翻轉 |
| 關於 y 軸反射 | Reflect in y-axis | $y = f(x) \rightarrow y = f(-x)$ | 左右翻轉 |
| 關於原點反射 | Reflect in origin | $y = f(x) \rightarrow y = -f(-x)$ | 旋轉 180° |
| 中文 | English | 原方程 → 新方程 |
|---|---|---|
| 垂直伸縮 $k$ 倍 | Vertical stretch by $k$ | $y = f(x) \rightarrow y = kf(x)$ |
| 水平伸縮 $\dfrac{1}{k}$ 倍 | Horizontal stretch by $\dfrac{1}{k}$ | $y = f(x) \rightarrow y = f(kx)$ |
垂直伸縮 $y = kf(x)$:
• $k > 1$:圖像變「高」
• $0 < k < 1$:圖像變「矮」
水平伸縮 $y = f(kx)$:
• $k > 1$:圖像變「窄」
• $0 < k < 1$:圖像變「寬」
Vertical stretch $y = kf(x)$:
• $k > 1$: Graph becomes "taller"
• $0 < k < 1$: Graph becomes "shorter"
Horizontal stretch $y = f(kx)$:
• $k > 1$: Graph becomes "narrower"
• $0 < k < 1$: Graph becomes "wider"
1. 括號內相反:$f(x - k)$ 向右移 $k$
2. 括號外正常:$f(x) + k$ 向上移 $k$
3. 負號在外:$-f(x)$ 關於 x 軸反射
4. 負號在內:$f(-x)$ 關於 y 軸反射
5. 係數在外:$kf(x)$ 垂直伸縮
6. 係數在內:$f(kx)$ 水平壓縮
1. Inside opposite: $f(x - k)$ shifts right $k$
2. Outside normal: $f(x) + k$ shifts up $k$
3. Negative outside: $-f(x)$ reflects in x-axis
4. Negative inside: $f(-x)$ reflects in y-axis
5. Coefficient outside: $kf(x)$ vertical stretch
6. Coefficient inside: $f(kx)$ horizontal compress
題目:$y = x^2$ 向右移 3 個單位,向上移 2 個單位後的方程是?
Question: After shifting $y = x^2$ 3 units right and 2 units up, the equation is?
向右 3:$x \rightarrow (x - 3)$
向上 2:$+2$
答案:$y = (x-3)^2 + 2$
題目:$y = f(x)$ 關於 x 軸反射後的方程是?
Question: After reflecting $y = f(x)$ in the x-axis, the equation is?
關於 x 軸反射:負號在外面
答案:$y = -f(x)$
題目:$y = 2^x$ 向左移 1 個單位後的方程是?
Question: After shifting $y = 2^x$ 1 unit left, the equation is?
向左 1:$x \rightarrow (x + 1)$
答案:$y = 2^{x+1}$
題目:$y = \sin x$ 經過 $y = f(x) \rightarrow y = 2f(x)$ 轉換後,振幅變化是?
Question: For $y = \sin x$, after $y = 2f(x)$ transformation, how does the amplitude change?
$y = 2\sin x$:係數在外 → 垂直伸縮
振幅由 1 變為 2(增大 2 倍)
1. $y = x^3 - 5$ 2. $y = |{-x}| = |x|$(不變) 3. $y = \log(x - 4)$
📚 MathsKiller 中英對照天書 | P2-6 圖像轉換 Transformations
© 2025 MathsKiller | mathskiller.pro