📚 返回 / Back
📚 MATHSKILLER 中英對照天書
P2-6

圖像轉換

Transformations of Graphs
© 2025 MathsKiller
PAPER 2 專題 6 / Topic 6

圖像轉換 Transformations of Graphs

P2-6.1 平移 Translation

➡️ 平移公式 Translation Formulas

中文 English 原方程 → 新方程
向上移 $k$ Up by $k$ $y = f(x) \rightarrow y = f(x) + k$
向下移 $k$ Down by $k$ $y = f(x) \rightarrow y = f(x) - k$
向右移 $k$ Right by $k$ $y = f(x) \rightarrow y = f(x - k)$
向左移 $k$ Left by $k$ $y = f(x) \rightarrow y = f(x + k)$

💡 記憶要點 Key Points

上下移動:

• 在函數外面加減

• 加 → 上移,減 → 下移

左右移動:

• 在 x 旁邊加減(括號內)

• 「正反」原則:$x - k$ 向右移

Vertical shift:

• Add/subtract outside function

• + → up, − → down

Horizontal shift:

• Add/subtract beside x (in brackets)

• Opposite: $x - k$ shifts right

P2-6.2 反射 Reflection

🔄 反射公式 Reflection Formulas

中文 English 原方程 → 新方程 效果
關於 x 軸反射 Reflect in x-axis $y = f(x) \rightarrow y = -f(x)$ 上下翻轉
關於 y 軸反射 Reflect in y-axis $y = f(x) \rightarrow y = f(-x)$ 左右翻轉
關於原點反射 Reflect in origin $y = f(x) \rightarrow y = -f(-x)$ 旋轉 180°
P2-6.3 伸縮 Stretching & Compression

↔️ 伸縮公式 Stretching Formulas

中文 English 原方程 → 新方程
垂直伸縮 $k$ 倍 Vertical stretch by $k$ $y = f(x) \rightarrow y = kf(x)$
水平伸縮 $\dfrac{1}{k}$ 倍 Horizontal stretch by $\dfrac{1}{k}$ $y = f(x) \rightarrow y = f(kx)$

📊 伸縮效果 Stretching Effects

垂直伸縮 $y = kf(x)$:

• $k > 1$:圖像變「高」

• $0 < k < 1$:圖像變「矮」

水平伸縮 $y = f(kx)$:

• $k > 1$:圖像變「窄」

• $0 < k < 1$:圖像變「寬」

Vertical stretch $y = kf(x)$:

• $k > 1$: Graph becomes "taller"

• $0 < k < 1$: Graph becomes "shorter"

Horizontal stretch $y = f(kx)$:

• $k > 1$: Graph becomes "narrower"

• $0 < k < 1$: Graph becomes "wider"

⚡ 秒殺技巧 Quick Tips

1. 括號內相反:$f(x - k)$ 向右移 $k$

2. 括號外正常:$f(x) + k$ 向上移 $k$

3. 負號在外:$-f(x)$ 關於 x 軸反射

4. 負號在內:$f(-x)$ 關於 y 軸反射

5. 係數在外:$kf(x)$ 垂直伸縮

6. 係數在內:$f(kx)$ 水平壓縮

1. Inside opposite: $f(x - k)$ shifts right $k$

2. Outside normal: $f(x) + k$ shifts up $k$

3. Negative outside: $-f(x)$ reflects in x-axis

4. Negative inside: $f(-x)$ reflects in y-axis

5. Coefficient outside: $kf(x)$ vertical stretch

6. Coefficient inside: $f(kx)$ horizontal compress

P2-6.4 DSE 歷屆真題 Past Paper Questions
DSE 2023 Q27

題目:$y = x^2$ 向右移 3 個單位,向上移 2 個單位後的方程是?

Question: After shifting $y = x^2$ 3 units right and 2 units up, the equation is?

📝 秒殺 Quick Solution

向右 3:$x \rightarrow (x - 3)$

向上 2:$+2$

答案:$y = (x-3)^2 + 2$

DSE 2022 Q28

題目:$y = f(x)$ 關於 x 軸反射後的方程是?

Question: After reflecting $y = f(x)$ in the x-axis, the equation is?

📝 秒殺 Quick Solution

關於 x 軸反射:負號在外面

答案:$y = -f(x)$

DSE 2021 Q29

題目:$y = 2^x$ 向左移 1 個單位後的方程是?

Question: After shifting $y = 2^x$ 1 unit left, the equation is?

📝 秒殺 Quick Solution

向左 1:$x \rightarrow (x + 1)$

答案:$y = 2^{x+1}$

DSE 2020 Q30

題目:$y = \sin x$ 經過 $y = f(x) \rightarrow y = 2f(x)$ 轉換後,振幅變化是?

Question: For $y = \sin x$, after $y = 2f(x)$ transformation, how does the amplitude change?

📝 秒殺 Quick Solution

$y = 2\sin x$:係數在外 → 垂直伸縮

振幅由 1 變為 2(增大 2 倍)

📝 練習題 Practice Questions

1. $y = x^3$ 向下移 5 個單位後的方程是?
After shifting $y = x^3$ 5 units down, the equation is?
2. $y = |x|$ 關於 y 軸反射後的方程是?
After reflecting $y = |x|$ in the y-axis, the equation is?
3. $y = \log x$ 向右移 4 個單位後的方程是?
After shifting $y = \log x$ 4 units right, the equation is?

📋 答案 Answers

1. $y = x^3 - 5$   2. $y = |{-x}| = |x|$(不變)   3. $y = \log(x - 4)$

📚 MathsKiller 中英對照天書 | P2-6 圖像轉換 Transformations

© 2025 MathsKiller | mathskiller.pro