| 中文 | English | 公式 Formula | 用途 Usage |
|---|---|---|---|
| 斜截式 | Slope-Intercept Form | $y = mx + c$ | 讀斜率和 y-截距 Read slope & y-intercept |
| 一般式 | General Form | $Ax + By + C = 0$ | 標準答案形式 Standard answer form |
| 點斜式 | Point-Slope Form | $y - y_1 = m(x - x_1)$ | 已知一點和斜率 Given point & slope |
| 兩點式 | Two-Point Form | $\dfrac{y - y_1}{y_2 - y_1} = \dfrac{x - x_1}{x_2 - x_1}$ | 已知兩點 Given two points |
斜率公式:
$m = \dfrac{y_2 - y_1}{x_2 - x_1} = \dfrac{\text{垂直變化}}{\text{水平變化}}$
斜率意義:
• $m > 0$:向右上升 ↗
• $m < 0$:向右下降 ↘
• $m = 0$:水平線
• $m$ 無定義:垂直線
Slope Formula:
$m = \dfrac{y_2 - y_1}{x_2 - x_1} = \dfrac{\text{rise}}{\text{run}}$
Slope Meaning:
• $m > 0$: Rising ↗
• $m < 0$: Falling ↘
• $m = 0$: Horizontal
• $m$ undefined: Vertical
$m > 0, c > 0$
向右上升,正截距
Rising, positive intercept
$m < 0, c > 0$
向右下降,正截距
Falling, positive intercept
$m > 0, c < 0$
向右上升,負截距
Rising, negative intercept
$m < 0, c < 0$
向右下降,負截距
Falling, negative intercept
| 中文 | English | 條件 Condition |
|---|---|---|
| 平行線 | Parallel Lines | $m_1 = m_2$ 斜率相等 Equal slopes |
| 垂直線 | Perpendicular Lines | $m_1 \times m_2 = -1$ 斜率乘積為 −1 |
1. 判斷升降:睇斜率 $m$ 正負
2. y-截距:代 $x = 0$ 入方程
3. x-截距:代 $y = 0$ 入方程
4. 平行:斜率相等
5. 垂直:斜率乘積 = −1
6. 過原點:$c = 0$(方程為 $y = mx$)
1. Rising/Falling: Check sign of $m$
2. y-intercept: Sub $x = 0$
3. x-intercept: Sub $y = 0$
4. Parallel: Equal slopes
5. Perpendicular: $m_1 \times m_2 = -1$
6. Through origin: $c = 0$ ($y = mx$)
題目:直線 $y = 2x - 3$ 的斜率和 y-截距分別是?
Question: What are the slope and y-intercept of the line $y = 2x - 3$?
比較 $y = mx + c$:斜率 $m = \mathbf{2}$,y-截距 $c = \mathbf{-3}$
題目:求過點 $(2, 5)$ 且斜率為 3 的直線方程。
Question: Find the equation of the line passing through $(2, 5)$ with slope 3.
用點斜式:$y - 5 = 3(x - 2)$
$y - 5 = 3x - 6$
$y = 3x - 1$ 或 $\mathbf{3x - y - 1 = 0}$
題目:直線 $L_1: 2x - y + 3 = 0$,求與 $L_1$ 平行的直線斜率。
Question: Line $L_1: 2x - y + 3 = 0$. Find the slope of lines parallel to $L_1$.
改寫為斜截式:$y = 2x + 3$
斜率 $m = \mathbf{2}$
平行線斜率相等,所以答案是 $\mathbf{2}$
題目:直線 $L$ 的斜率是 $\dfrac{1}{2}$,求與 $L$ 垂直的直線斜率。
Question: Line $L$ has slope $\dfrac{1}{2}$. Find the slope of lines perpendicular to $L$.
垂直線:$m_1 \times m_2 = -1$
$\dfrac{1}{2} \times m_2 = -1$
$m_2 = \mathbf{-2}$
1. 3 2. 3 3. $\dfrac{1}{4}$
📚 MathsKiller 中英對照天書 | P2-5 直線圖像 Linear Graphs
© 2025 MathsKiller | mathskiller.pro