📚 返回 / Back
📚 MATHSKILLER 中英對照天書
P2-5

直線圖像

Linear Graphs
© 2025 MathsKiller
PAPER 2 專題 5 / Topic 5

直線圖像 Linear Graphs

P2-5.1 直線方程基礎 Basics of Linear Equations

📐 直線方程形式 Forms of Linear Equations

中文 English 公式 Formula 用途 Usage
斜截式 Slope-Intercept Form $y = mx + c$ 讀斜率和 y-截距
Read slope & y-intercept
一般式 General Form $Ax + By + C = 0$ 標準答案形式
Standard answer form
點斜式 Point-Slope Form $y - y_1 = m(x - x_1)$ 已知一點和斜率
Given point & slope
兩點式 Two-Point Form $\dfrac{y - y_1}{y_2 - y_1} = \dfrac{x - x_1}{x_2 - x_1}$ 已知兩點
Given two points
P2-5.2 斜率與截距 Slope & Intercepts

📈 斜率公式與意義 Slope Formula & Meaning

斜率公式:

$m = \dfrac{y_2 - y_1}{x_2 - x_1} = \dfrac{\text{垂直變化}}{\text{水平變化}}$

斜率意義:

• $m > 0$:向右上升 ↗

• $m < 0$:向右下降 ↘

• $m = 0$:水平線

• $m$ 無定義:垂直線

Slope Formula:

$m = \dfrac{y_2 - y_1}{x_2 - x_1} = \dfrac{\text{rise}}{\text{run}}$

Slope Meaning:

• $m > 0$: Rising ↗

• $m < 0$: Falling ↘

• $m = 0$: Horizontal

• $m$ undefined: Vertical

📊 直線圖像類型 Types of Linear Graphs

$m > 0, c > 0$

向右上升,正截距
Rising, positive intercept

$m < 0, c > 0$

向右下降,正截距
Falling, positive intercept

$m > 0, c < 0$

向右上升,負截距
Rising, negative intercept

$m < 0, c < 0$

向右下降,負截距
Falling, negative intercept

P2-5.3 平行線與垂直線 Parallel & Perpendicular Lines

✏️ 平行線與垂直線條件 Conditions

中文 English 條件 Condition
平行線 Parallel Lines $m_1 = m_2$
斜率相等 Equal slopes
垂直線 Perpendicular Lines $m_1 \times m_2 = -1$
斜率乘積為 −1

⚡ 秒殺技巧 Quick Tips

1. 判斷升降:睇斜率 $m$ 正負

2. y-截距:代 $x = 0$ 入方程

3. x-截距:代 $y = 0$ 入方程

4. 平行:斜率相等

5. 垂直:斜率乘積 = −1

6. 過原點:$c = 0$(方程為 $y = mx$)

1. Rising/Falling: Check sign of $m$

2. y-intercept: Sub $x = 0$

3. x-intercept: Sub $y = 0$

4. Parallel: Equal slopes

5. Perpendicular: $m_1 \times m_2 = -1$

6. Through origin: $c = 0$ ($y = mx$)

P2-5.4 DSE 歷屆真題 Past Paper Questions
DSE 2023 Q25

題目:直線 $y = 2x - 3$ 的斜率和 y-截距分別是?

Question: What are the slope and y-intercept of the line $y = 2x - 3$?

📝 秒殺 Quick Solution

比較 $y = mx + c$:斜率 $m = \mathbf{2}$,y-截距 $c = \mathbf{-3}$

DSE 2022 Q26

題目:求過點 $(2, 5)$ 且斜率為 3 的直線方程。

Question: Find the equation of the line passing through $(2, 5)$ with slope 3.

📝 秒殺 Quick Solution

用點斜式:$y - 5 = 3(x - 2)$

$y - 5 = 3x - 6$

$y = 3x - 1$ 或 $\mathbf{3x - y - 1 = 0}$

DSE 2021 Q27

題目:直線 $L_1: 2x - y + 3 = 0$,求與 $L_1$ 平行的直線斜率。

Question: Line $L_1: 2x - y + 3 = 0$. Find the slope of lines parallel to $L_1$.

📝 秒殺 Quick Solution

改寫為斜截式:$y = 2x + 3$

斜率 $m = \mathbf{2}$

平行線斜率相等,所以答案是 $\mathbf{2}$

DSE 2020 Q28

題目:直線 $L$ 的斜率是 $\dfrac{1}{2}$,求與 $L$ 垂直的直線斜率。

Question: Line $L$ has slope $\dfrac{1}{2}$. Find the slope of lines perpendicular to $L$.

📝 秒殺 Quick Solution

垂直線:$m_1 \times m_2 = -1$

$\dfrac{1}{2} \times m_2 = -1$

$m_2 = \mathbf{-2}$

📝 練習題 Practice Questions

1. 求過 $(1, 4)$ 和 $(3, 10)$ 的直線斜率。
Find the slope of the line through $(1, 4)$ and $(3, 10)$.
2. 直線 $3x + 2y - 6 = 0$ 的 y-截距是?
What is the y-intercept of $3x + 2y - 6 = 0$?
3. 若直線斜率為 −4,求與之垂直的直線斜率。
If a line has slope −4, find the slope of perpendicular lines.

📋 答案 Answers

1. 3   2. 3   3. $\dfrac{1}{4}$

📚 MathsKiller 中英對照天書 | P2-5 直線圖像 Linear Graphs

© 2025 MathsKiller | mathskiller.pro