極坐標用 $(r, \theta)$ 表示一個點:
• $r$ = 到原點的距離(極徑)
• $\theta$ = 與正 x 軸的夾角(極角)
• 角度通常以度或弧度表示
• 逆時針為正方向
Polar coordinates use $(r, \theta)$ to represent a point:
• $r$ = distance from origin (radius)
• $\theta$ = angle from positive x-axis (argument)
• Angle in degrees or radians
• Counter-clockwise is positive
| 中文 | English | 公式 Formula |
|---|---|---|
| 極 → 直角 | Polar → Cartesian | $x = r\cos\theta$ $y = r\sin\theta$ |
| 直角 → 極 | Cartesian → Polar | $r = \sqrt{x^2 + y^2}$ $\tan\theta = \dfrac{y}{x}$ |
$\cos = \dfrac{\sqrt{3}}{2}$
$\sin = \dfrac{1}{2}$
$\cos = \dfrac{\sqrt{2}}{2}$
$\sin = \dfrac{\sqrt{2}}{2}$
$\cos = \dfrac{1}{2}$
$\sin = \dfrac{\sqrt{3}}{2}$
$\cos = 0$
$\sin = 1$
1. 極→直角:$x = r\cos\theta$,$y = r\sin\theta$
2. 直角→極:$r = \sqrt{x^2 + y^2}$
3. 特殊位置:
• x 軸正半軸:$\theta = 0°$
• y 軸正半軸:$\theta = 90°$
• x 軸負半軸:$\theta = 180°$
4. 注意象限決定角度!
1. Polar→Cartesian: $x = r\cos\theta$, $y = r\sin\theta$
2. Cartesian→Polar: $r = \sqrt{x^2 + y^2}$
3. Special positions:
• Positive x-axis: $\theta = 0°$
• Positive y-axis: $\theta = 90°$
• Negative x-axis: $\theta = 180°$
4. Quadrant determines angle!
題目:將極坐標 $(4, 60°)$ 轉換為直角坐標。
Question: Convert polar coordinates $(4, 60°)$ to Cartesian coordinates.
$x = 4\cos 60° = 4 \times \dfrac{1}{2} = 2$
$y = 4\sin 60° = 4 \times \dfrac{\sqrt{3}}{2} = 2\sqrt{3}$
答案:$(2, 2\sqrt{3})$
題目:將極坐標 $(6, 150°)$ 轉換為直角坐標。
Question: Convert polar coordinates $(6, 150°)$ to Cartesian coordinates.
$x = 6\cos 150° = 6 \times (-\dfrac{\sqrt{3}}{2}) = -3\sqrt{3}$
$y = 6\sin 150° = 6 \times \dfrac{1}{2} = 3$
答案:$(-3\sqrt{3}, 3)$
題目:將直角坐標 $(3, 3)$ 轉換為極坐標。
Question: Convert Cartesian coordinates $(3, 3)$ to polar coordinates.
$r = \sqrt{3^2 + 3^2} = \sqrt{18} = 3\sqrt{2}$
$\tan\theta = \dfrac{3}{3} = 1$,$\theta = 45°$
答案:$(3\sqrt{2}, 45°)$
題目:將直角坐標 $(-4, 0)$ 轉換為極坐標。
Question: Convert Cartesian coordinates $(-4, 0)$ to polar coordinates.
$r = \sqrt{16 + 0} = 4$
點在負 x 軸上,$\theta = 180°$
答案:$(4, 180°)$
1. $(4\sqrt{3}, 4)$ 2. $(5, 270°)$ 3. $(-5, 5\sqrt{3})$
📚 MathsKiller 中英對照天書 | P2-4 極坐標 Polar Coordinates
© 2025 MathsKiller | mathskiller.pro