📚 返回 / Back
📚 MATHSKILLER 中英對照天書
P2-2

三角形四心

Triangle Centres
© 2025 MathsKiller
PAPER 2 專題 2 / Topic 2

三角形四心 Triangle Centres

P2-2.1 四心總覽 Overview of Four Centres

📊 四心對照表 Comparison Table

中文 English 定義 Definition 性質 Property
內心 I Incentre 角平分線交點
Intersection of angle bisectors
內切圓圓心
Centre of incircle
外心 O Circumcentre 垂直平分線交點
Intersection of perpendicular bisectors
外接圓圓心
Centre of circumcircle
重心 G Centroid 中線交點
Intersection of medians
分中線成 2:1
Divides medians in ratio 2:1
垂心 H Orthocentre 高線交點
Intersection of altitudes
位置取決於三角形類型
Position depends on triangle type
P2-2.2 四心詳解 Detailed Explanation

🔵 內心 Incentre (I)

• 三條角平分線的交點

• 是內切圓的圓心

• 到三邊距離相等(= 內切圓半徑 r)

公式:$\angle BIC = 90° + \dfrac{\angle A}{2}$

• Intersection of three angle bisectors

• Centre of the incircle

• Equidistant from all three sides (= inradius r)

Formula: $\angle BIC = 90° + \dfrac{\angle A}{2}$

A B C I

🟢 外心 Circumcentre (O)

• 三條垂直平分線的交點

• 是外接圓的圓心

• 到三頂點距離相等(= 外接圓半徑 R)

位置:銳角→內部,直角→斜邊中點,鈍角→外部

• Intersection of three perpendicular bisectors

• Centre of the circumcircle

• Equidistant from all three vertices (= circumradius R)

Position: Acute→inside, Right→midpoint of hypotenuse, Obtuse→outside

A B C O

🟡 重心 Centroid (G)

• 三條中線的交點

• 把中線分成 2:1(靠頂點段:靠中點段)

• 三角形的「重量中心」

坐標公式:$G = \left(\dfrac{x_1+x_2+x_3}{3}, \dfrac{y_1+y_2+y_3}{3}\right)$

• Intersection of three medians

• Divides each median in ratio 2:1 (from vertex)

• The "centre of mass" of the triangle

Coordinate formula: $G = \left(\dfrac{x_1+x_2+x_3}{3}, \dfrac{y_1+y_2+y_3}{3}\right)$

A B C G 2 1

🔴 垂心 Orthocentre (H)

• 三條的交點

銳角三角形:垂心在內部

直角三角形:垂心在直角頂點

鈍角三角形:垂心在外部

• Intersection of three altitudes

Acute triangle: Orthocentre is inside

Right triangle: Orthocentre is at the right angle vertex

Obtuse triangle: Orthocentre is outside

⚡ 秒殺技巧 Quick Tips

記憶口訣:

「內角外垂,重中垂高」

內心→角平分線

外心→垂直平分線

重心→中線

垂心→高

Memory Aid:

"Incentre = Intersection of Angle bisectors"

"Circumcentre = Circumcircle centre"

"Centroid = Centre of mass, 2:1 ratio"

"Orthocentre = Orthogonal (perpendicular) heights"

P2-2.3 DSE 歷屆真題 Past Paper Questions
DSE 2022 Q36
x y A(2,6) B(8,2) C(4,-2) G

題目:△ABC 的頂點坐標為 A(2, 6)、B(8, 2)、C(4, -2),求重心坐標。

Question: Find the centroid of △ABC with vertices A(2, 6), B(8, 2), C(4, -2).

📝 秒殺 Quick Solution

$G = \left(\dfrac{x_1+x_2+x_3}{3}, \dfrac{y_1+y_2+y_3}{3}\right)$

$= \left(\dfrac{2+8+4}{3}, \dfrac{6+2+(-2)}{3}\right) = \mathbf{\left(\dfrac{14}{3}, 2\right)}$

DSE 2020 Q38
A B C I 50° ∠BIC=?

題目:I 是 △ABC 的內心,若 ∠BAC = 50°,求 ∠BIC。

Question: I is the incentre of △ABC. If ∠BAC = 50°, find ∠BIC.

📝 秒殺公式 Quick Formula

$\angle BIC = 90° + \dfrac{\angle A}{2}$

$= 90° + \dfrac{50°}{2} = 90° + 25° = \mathbf{115°}$

DSE 2019 Q35

題目:直角三角形的垂心在哪裡?

Question: Where is the orthocentre of a right-angled triangle?

📝 秒殺 Quick Answer

直角三角形的垂心就在直角頂點上!

The orthocentre is at the right-angle vertex!

DSE 2018 Q37

題目:O 是 △ABC 的外心,OA = 5 cm。求外接圓的半徑。

Question: O is the circumcentre of △ABC, OA = 5 cm. Find the circumradius.

📝 秒殺 Quick Answer

外心到三頂點等距,即外接圓半徑!

$R = OA = OB = OC = \mathbf{5}$ cm

📝 練習題 Practice Questions

1. △ABC 的頂點為 A(0, 0)、B(6, 0)、C(3, 6),求重心坐標。
Find the centroid of △ABC with A(0, 0), B(6, 0), C(3, 6).
2. I 是 △ABC 的內心,若 ∠ABC = 60°、∠BCA = 80°,求 ∠BIC。
I is the incentre of △ABC. If ∠ABC = 60°, ∠BCA = 80°, find ∠BIC.
3. 鈍角三角形的外心在三角形的哪裡?
Where is the circumcentre of an obtuse triangle?
4. G 是 △ABC 的重心,AG : GM = ?(M 是 BC 的中點)
G is the centroid of △ABC, find AG : GM where M is the midpoint of BC.

📋 答案 Answers

1. (3, 2)   2. 110°   3. 三角形外部 (Outside the triangle)   4. 2:1

📚 MathsKiller 中英對照天書 | P2-2 三角形四心 Triangle Centres

© 2025 MathsKiller | mathskiller.pro