| 形式 Form | 中文 | English | 特點 Features |
|---|---|---|---|
| $y = ax^2 + bx + c$ | 一般式 | General Form | y-截距 = $c$ |
| $y = a(x-h)^2 + k$ | 頂點式 | Vertex Form | 頂點 Vertex = $(h,k)$ ⭐ |
| $y = a(x-p)(x-q)$ | 因式式 | Factored Form | x-截距 = $p$, $q$ |
題目 Q: 求 Find vertex of $y = 2x^2 - 8x + 5$
Step 1:求 x 坐標
$x = -\dfrac{-8}{2(2)} = 2$
Step 2:代入求 y
$y = 2(4) - 16 + 5 = -3$
頂點 = $(2, -3)$
Step 1: Find x-coordinate
$x = -\dfrac{-8}{2(2)} = 2$
Step 2: Substitute to find y
$y = 2(4) - 16 + 5 = -3$
Vertex = $(2, -3)$
$y = (x+3)^2 - 5$
頂點 = $(3, -5)$ ❌
頂點 = $(-3, -5)$ ✓
$y = (x+3)^2 - 5$
Vertex = $(3, -5)$ ❌
Vertex = $(-3, -5)$ ✓
| 觀察 / Observe | 判斷 | Conclusion |
|---|---|---|
| 開口向上 Opens up ∪ | $a > 0$ | $a > 0$ |
| 開口向下 Opens down ∩ | $a < 0$ | $a < 0$ |
| 軸在右 Axis on right | $a$, $b$ 異號 | $a$, $b$ opposite signs |
| 軸在左 Axis on left | $a$, $b$ 同號 | $a$, $b$ same sign |
| y-截距在上 y-int above | $c > 0$ | $c > 0$ |
| y-截距在下 y-int below | $c < 0$ | $c < 0$ |
「開口定 a」
「軸 a 異同 b」
「截距定 c」
"Opening → sign of a"
"Axis position → a,b relation"
"y-intercept → sign of c"
Step 1:抽出 a
$y = 2(x^2 - 6x) + 13$
Step 2:配方
$= 2(x^2 - 6x + 9 - 9) + 13$
$= 2(x-3)^2 - 18 + 13$
答案:$y = 2(x-3)^2 - 5$
Step 1: Factor out a
$y = 2(x^2 - 6x) + 13$
Step 2: Complete square
$= 2(x^2 - 6x + 9 - 9) + 13$
$= 2(x-3)^2 - 18 + 13$
Answer: $y = 2(x-3)^2 - 5$
Q: 拋物線 The parabola $y = -2x^2 + 8x - 3$ 的頂點 vertex is
A. $(-2, -27)$ B. $(-2, 5)$ C. $(2, -27)$ D. $(2, 5)$
Q: 若 If $y = x^2 - 4x + k$ 的最小值 minimum is 5,求 find $k$
A. 1 B. 5 C. 9 D. 13
📚 MathsKiller 中英對照天書 Bilingual Textbook
第二章 Chapter 2:二次函數圖像 Quadratic Functions
© 2025 MathsKiller | mathskiller.pro