二次方程是指含有一個未知數且未知數的最高次數為 2 的方程。
A quadratic equation is a polynomial equation of degree 2 in one variable.
| 係數 Coefficient | 中文名稱 | English Name | 例 Example |
|---|---|---|---|
| $a$ | 二次項係數 | Coefficient of $x^2$ | $a = 2$ |
| $b$ | 一次項係數 | Coefficient of $x$ | $b = -5$ |
| $c$ | 常數項 | Constant term | $c = 3$ |
「負 b 正負開方
b 方減 4ac
除以 2a」
"Negative b, plus or minus
square root of b squared minus 4ac
all over 2a"
題目 Question: 解 Solve $2x^2 - 5x - 3 = 0$
識別係數:$a = 2$,$b = -5$,$c = -3$
代入公式:
$x = \dfrac{5 \pm \sqrt{25 + 24}}{4} = \dfrac{5 \pm 7}{4}$
$\therefore x = 3$ 或 $x = -\dfrac{1}{2}$
Identify: $a = 2$, $b = -5$, $c = -3$
Substitute into formula:
$x = \dfrac{5 \pm \sqrt{25 + 24}}{4} = \dfrac{5 \pm 7}{4}$
$\therefore x = 3$ or $x = -\dfrac{1}{2}$
| $\Delta$ | 根的性質 | Nature of Roots |
|---|---|---|
| $\Delta > 0$ | 兩個不相等實根 | Two distinct real roots |
| $\Delta = 0$ | 兩個相等實根(重根) | Two equal real roots |
| $\Delta < 0$ | 沒有實根 | No real roots |
「有實根」→ $\Delta \geq 0$
「有不相等實根」→ $\Delta > 0$
"Has real roots" → $\Delta \geq 0$
"Has distinct roots" → $\Delta > 0$
設 $\alpha$ 和 $\beta$ 是 $ax^2 + bx + c = 0$ 的兩根,則:
If $\alpha$ and $\beta$ are roots of $ax^2 + bx + c = 0$, then:
| 根之和 Sum: | $\alpha + \beta = -\dfrac{b}{a}$ |
| 根之積 Product: | $\alpha\beta = \dfrac{c}{a}$ |
| 要求 / Expression | 公式 / Formula |
|---|---|
| $\alpha^2 + \beta^2$ | $= (\alpha + \beta)^2 - 2\alpha\beta$ |
| $(\alpha - \beta)^2$ | $= (\alpha + \beta)^2 - 4\alpha\beta$ |
| $\dfrac{1}{\alpha} + \dfrac{1}{\beta}$ | $= \dfrac{\alpha + \beta}{\alpha\beta}$ |
Q: 若 If $\alpha$, $\beta$ 是 are roots of $3x^2 - 8x + 2 = 0$,求 find $\dfrac{1}{\alpha} + \dfrac{1}{\beta}$
由韋達定理:
$\alpha + \beta = \dfrac{8}{3}$
$\alpha\beta = \dfrac{2}{3}$
$\dfrac{1}{\alpha} + \dfrac{1}{\beta} = \dfrac{8/3}{2/3} = 4$
By Vieta's formulas:
$\alpha + \beta = \dfrac{8}{3}$
$\alpha\beta = \dfrac{2}{3}$
$\dfrac{1}{\alpha} + \dfrac{1}{\beta} = \dfrac{8/3}{2/3} = 4$
Q: $x^2+ax+a=1$ 有相等根 has equal roots,求 find $a$
A. $-1$ B. $2$ C. $0$ or $-4$ D. $-2$ or $2$
📚 MathsKiller 中英對照天書 Bilingual Textbook
第一章 Chapter 1:二次方程 Quadratic Equations
© 2025 MathsKiller | mathskiller.pro